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A B S T R A C T   

Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus 
represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of 
targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mu-
tations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of 
these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in 
adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in 
paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest inci-
dence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild- 
type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paedi-
atric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in 
empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of 
single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very 
strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta 
inhibitors is required. Similarly, even where there is an AKT mutation (~0.1 %), the role of AKT inhibitors in 
paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every 
child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant 
PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be 
based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. 
However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate 
data for an indication.   

1. Introduction 

Mutations of the phosphoinositide 3-kinase (PI3-K) signalling 
pathway are rare in paediatric malignancies (about 1–2 % of tumours), 
however the pathway is constitutively activated or up-regulated in many 
paediatric cancers. This raises questions about the importance of this 
target for the development of new paediatric anti-cancer drugs [1,2]. In 
addition, unique clinical toxicities of targeting this important metabolic 
pathway with PI3-K/AKT/mTOR inhibitors have been observed in 
adults, particularly when these drugs are combined with chemother-
apies [3]. A large array of inhibitors of this pathway have been devel-
oped and approved for adult cancers, yet very few have received 
paediatric regulatory approval. In addition, the optimal use of these 
inhibitors and how best to combine them with other agents commonly 
used in children is not fully understood. Furthermore, despite the large 
number of inhibitors and the apparent relevance to paediatric cancers, 
inhibition of these targets has not to date had a major impact for most 
children and adolescents and, at present, only four front-line phase 3 
trials have incorporated this class of drugs [4–7]. 

The eleventh multi-stakeholder Paediatric Strategy Forum [8–17] 
organised by ACCELERATE [18,19] in collaboration with the European 
Medicines Agency (EMA) and with the participation of the US Food and 
Drug Administration (FDA) focussed on targeting the PI3-K signalling 
pathway in paediatric and adolescent cancers with specific discussion of 
PI3-K, mTOR, AKT and glycogen synthase kinase-3 beta (GSK3β) 
inhibitors. 

The meeting was held at the Dana-Farber Cancer Institute, Boston, 
Massachusetts, United States on 3 and 4 April 2023. There were 146 
participants, 48 in person, and 98 virtual from 27 countries: 83 inter-
national clinical paediatric oncology and biology experts from Europe, 
the United States (US), Canada, Japan, Australia, Africa and Asia; an 
expert in adult anti-cancer drug development; 26 representatives from 
eight pharmaceutical companies (Actuate Therapeutics, AstraZeneca, 
Bayer, Celcuity, Genentech, Kazia Therapeutics, LOXO/Eli Lily, Merck); 
22 patient advocates from Europe, the US and Nigeria (representatives 
from Alan B. Slifka Foundation, Andrew McDonough B+ Foundation, 

Children’s Cancer Cause, Coalitional Against Childhood Cancer, Dorcas 
Cancer Foundation, The EVAN Foundation, Imagine for Margo, National 
Brain Tumor Society, Nikita, Paediatric Brain Tumor Foundation of the 
US, Rally Foundation for Childhood Cancer Research, Solving Kids’ 
Cancer [US], Swiss DIPG, Zoé4life and Childhood Cancer International 
Europe); 15 regulators from the EMA (including the Paediatric Com-
mittee [PDCO]) and national competent authorities within the EU reg-
ulatory network and US FDA as observers; and two organisers. To 
provide a basis for discussion, academic experts first presented an 
overview of the biology of the pathway, genetic disorders driven by 
pathway mutations, successful experiences with PI3-K/AKT inhibitors in 
adults, the genomic landscape in children and combination strategies. 
Potential lessons learnt from mTOR inhibitors were highlighted. Details 
of ten PI3-K, AKT and GSK3β inhibitors were presented by companies or 
academic investigators. The Forum concluded with the patient advo-
cates’ perspective and a multi-stakeholder strategic discussion. 

2. Biology of the PI3-K/AKT/mTOR pathway 

PI3-K is a lipid kinase that phosphorylates phosphatidylinositol-4,5- 
bisphosphate (PIP2) at the 3 position to generate a membrane embedded 
second messenger phosphatidylinositol- 3,4,5-trisphosphate (PIP3) 
[20]. PIP3 was found to be the optimal substrate for the tumour sup-
pressor protein, phosphatase and TENsin homolog (PTEN) [21], which is 
the second most frequently lost tumour suppressor gene in human 
cancers. An overview of the pathway is shown in Fig. 1. 

Insulin binds to the insulin tyrosine kinase receptor which then 
phosphorylates insulin receptor substrate at sites optimal for binding to 
PI3-K and generates PIP3. Insulin increases glycogen production, pro-
tein synthesis, glucose uptake and reduces the transcription of gluco-
neogenesis in all cells. PTEN dephosphorylates PIP3 thereby inhibiting 
this pathway activation. In summary, growth factors (PDGF, IGF1 and 
others) and hormones (e.g. insulin) activate PI3-K and drive growth and 
cell survival through glucose uptake and metabolism and PTEN coun-
teracts [22]. 

Activating mutations, amplifications, or both of PIK3CA, the gene for 
PI3-K, most frequently occur in women’s cancers (uterine, cervical, 
breast and ovarian) and colorectal cancers. Most human cancers have 
either PTEN loss, PIK3CA mutations, amplifications, or both [23,24]. 

1 Joint first authors 
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In addition, in PIK3CA-related overgrowth syndromes (PROS), 
mosaic activating mutations in PIK3CA (the same as in malignancy) 
result in localized hypertrophy, illustrating that, while PIK3CA muta-
tions alone are not enough to cause cancer, they can serve to accelerate 
tissue growth [25]. 

PI3-K is a dimer composed of p85 and p110α subunits. There are 
oncogenic mutations (most frequently E453/E545 mutated p110⍺) in 
the catalytic subunit of PI3-K, and in H1047R p110⍺ (40 %), which 
result in strong activation of the insulin pathway [26–29]. 

AKT phosphorylates tuberous sclerosis complex 2 (TSC2) and loss of 
TSC2 causes hyper-activation of the downstream mammalian target of 
rapamycin (mTOR) pathway, resulting in the tuberous sclerosis complex 
(TSC). Subependymal giant cell astrocytomas (SEGAs) associated with 
TSC are treated with mTOR inhibitors [30]. 

In mice and humans, PI3-K inhibition increases blood glucose and 
induces over-secretion of insulin, which may be relevant to tumour 
control. The PI3-K inhibitor, BKM120, results in cell death in organoid 
cultures of PIK3CA mutant endometrial cancer, but in the presence of 
insulin the cells survive as insulin protects from BKM120-induced cell 
death [31]. High insulin levels therefore override the effects of PI3-K 
inhibition. Approaches to reduce glucose levels without exogenous in-
sulin include: metformin (suppressing glycogenesis in the liver), SGLT2 
inhibitors (inhibiting reabsorption of glucose in the kidney) and a 
ketogenic (very low carbohydrate, high fat) diet. In mouse models, a 

ketogenic diet is the most effective approach to keep insulin levels low 
and cause tumour regression with a PI3-K inhibitor. This anti-tumour 
effect is abrogated by the addition of insulin. SGLT2 inhibitors were 
the second most effective strategy [31]. High insulin levels therefore 
override the effects of PI3-K inhibition. In the phase Ib study of alpelisib 
(BYL719), a PI3-Kα-specific inhibitor, responses were observed and 
metformin or sodium-glucose cotransporter-2 (SGLT2) inhibitor was 
administered, to control drug-induced elevated glucose levels and no 
patients received insulin [32]. In contrast, a phase 1 trial of taselisib 
allowed insulin for glucose control and no responses were observed 
[33]. Clinical trials are ongoing combining PI3-K inhibitors and a 
ketogenic diet in endometrial cancer, lymphoma and HER2 negative 
breast cancer. 

There are now specific inhibitors of the H1047R mutant form of 
PIK3CA [34]. Since wild-type PI3-K is less inhibited by these 
mutation-specific inhibitors, these are thought to not cause hyper-
glycaemic effects. 

In conclusion, high serum insulin levels protect tumour cells from 
PI3-Kα inhibitors, so maintaining low serum glucose and insulin during 
therapy is critical for tumour killing with these drugs. Specific inhibitors 
of the mutant form of PIK3CA (i.e. H1047R) do not raise serum insulin 
and are far more effective in pre-clinical trials. 

Fig. 1. Schematic overview of the PI3K/AKT/mTOR pathway. Activation of tyrosine kinase receptors (TKR) results in the activation/recruitment of phosphatidy-
linositol 3-kinase (PI3K) to the cell membrane, which in turn phosphorylates phosphatidylinositol-4,5-biphosphonate (PIP2) to phosphatidylinositol-3,4,5- 
biphosphonate (PIP3). PIP3 interacts with and activates AKT which in turn phosphorylates and inhibits glycogen synthase kinase-3 beta (GSK3B) leading to cell 
cycle progression and alterations in protein and glycogen synthesis. Similarly, activated AKT inhibits FOXO1 and tuberous sclerosis complex 2 (TSC2). In turn, 
inhibition of TSC2 leads to activation of the mammalian target of rapamycin complex 1 (mTORC1). All of these signalling pathways result in increased cell pro-
liferation, growth, and survival. The mammalian target of rapamycin complex 2 (mTORC2) can also activate AKT. The tumour suppressor phosphatase and TENsin 
homolog (PTEN) inactivates PIP3 back to PIP2. Created with BioRender.com. 
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3. Lessons learnt from genetic disorders driven by pathway 
mutations - PIK3CA-related overgrowth syndromes (PROS) 

A mosaic gain of function PIK3CA mutation is responsible for the 
majority (80 %) of overgrowth syndromes [25,35–38]. In 2018, alpeli-
sib, a PI3-K α isoform inhibitor, was demonstrated to have substantial 
activity in a patient with PROS [39]. The mechanism of the response was 
confirmed in a PROS mouse model, which responded to alpelisib and 
progressed on withdrawal of alpelisib [40]. 

EPIK-P1, a retrospective chart review, provided real-world data of 
patients with PROS and a confirmed PIK3CA mutation who received 
alpelisib under a managed access programme [41]. Out of 57 patients, 
37.5 % had a reduction of ≥ 20 % and 74.2 % had any reduction in 
target lesion volume; no patients progressed and symptoms improved. 
The dose administered was 250 mg/day in contrast to the single agent 
maximum tolerated dose of 400 mg/ day [42], indicating that as PI3-K is 
the driver, a lower dose was sufficient to achieve therapeutic benefit. 
Based on EPIK-P1, alpelisib was granted accelerated FDA approval in 
April 2022 for patients over two years of age with PROS [43]. Recently, 
infants (< 2 years) with PROS have responded to alpelisib [44]. 

EPIK-P2 [45] is an ongoing trial randomising alpelisib and placebo, 
followed by crossover for patients receiving placebo. In addition, the 
biology of the differences in clinical manifestations of PIK3CA mutation 
and response to alpelisib between different tissues is being elucidated 
[46,47]. 

4. Lessons learnt from genetic disorders driven by pathway 
mutations - Proteus syndrome and AKT inhibition 

Proteus syndrome is an ultra-rare (estimated to affect ~300 in-
dividuals globally) mosaic overgrowth disorder caused by an AKT1 
mutation during development [48]. It is almost always an AKTE17K 

mutation and leads to a heterogenous spectrum of severity and mani-
festations of Proteus syndrome most commonly causing bony over-
growth and cerebriform connective tissue nevi (CCTN) [49] but also 
changes in skin, bone, soft tissues and viscera and predisposing to tu-
mours. Miransertib, a pan-AKT inhibitor [50], was shown to decrease 
phospho-AKT and downstream signalling in patient derived fibroblasts 
[51]. The phase 1 pharmacodynamic study of six individuals with Pro-
teus syndrome demonstrated a 50 % reduction in phospho-AKT in 
affected tissue from five individuals at a dose of about 5 % used in 
oncology trials, and clinical improvement [52]. Subsequently, a study to 
evaluate the effect of miransertib on the manifestations of Proteus syn-
drome has been opened [53]. In view of the rarity and heterogeneity, a 
randomised study was not considered feasible and therefore a single arm 
design, with real world data to inform control estimates is being used 
and will require only 10 individuals with a 70 % response. 

5. Lessons learnt from successful adult oncology development of 
PI3-K inhibitors 

Development of PI3-K inhibitors in adult malignancies has followed 
the principles of i) what is the target gene/protein? ii) is there a 
biomarker? and iii) what is the disease of interest? (should the devel-
opment be disease specific or disease agnostic)? However, it has been 
challenging, predominantly due to agent toxicity and the need for 
combinations. 

Mutations in PIK3CA are common actionable alterations in breast, 
colorectal, endometrial, ovarian and gastric cancers, and selected cen-
tral nervous system (CNS) tumours [54]. Unlike in PROS, most PIK3CA 
mutations do not dramatically activate the protein and do not auto-
matically result in cancer. Very high levels of the oncogenic protein are 
required to cause malignancy and a secondary, cooperative event, for 
example PTEN alteration, or sometimes other mutations are required 
[55–57]. Usually, the cooperative event is in a different pathway or 
collateral event. 

PI3-K has four isoforms (α, β, γ, and δ) and there has been increasing 
selectivity in the development of PI3-K inhibitors [28]. 
Pan-PI3-K/mTOR inhibitors (apitolisib, BEZ235, GSK21264580), 
pan-PI3-K (buparlisib, copanlisib, pictilisib, pilaralisib) were generally 
toxic, with gedatolisib (pan-PI3-K/mTOR) and copanlisib (pan--
PI3-K/mTOR) less so. The PI3-K β-sparing inhibitor (taselisib) [33] had 
high δ activity and caused chronic colitis, which was predicted from the 
mouse model [58,59]. The α isoform-specific inhibitor (alpelisib) tended 
to be less toxic, active against mutant and wild type α PI3-K, but inactive 
against β, γ, and δ, nor mTOR [60]. There is also a β-isoform-specific 
inhibitor (AZD8186) and more selective inhibitors (GDC-0077 [mutant 
–p110α]). More recently, new mutation specific PI3-K inhibitors 
RLY-2608 [mutant α], STX-478 [H1047X], LOXO-783 [H1047R]) 
reduce toxicity from on-target PI3Kα wild-type activity. As a result, 
these agents can be successfully combined with other inhibitors and are 
high priority to develop. 

In the first trial of alpelisib (BYL719) in PIK3CA-altered solid tu-
mours (BYL719X2101), there were limited response rates, in contrast to 
the early results of BRAF inhibitors in BRAF mutated and driven cancers 
[42]. Sequencing of tumours of non-responder patients almost always 
demonstrated concomitant mutations in other genes whereas responders 
(mostly, ER-positive breast cancer patients) lacked other mutations 
[61]. This highlights that the disease context is very important. 

In vivo investigations showed that PI3-K inhibition in breast cancer 
enhanced oestrogen receptor function. [62] Therefore subsequent trials 
combined oestrogen receptor and PI3-Kα inhibition with alpelisib and 
fulvestrant (a selective oestrogen receptor degrader) [63]. In the SOLAR 
1 trial, the combination of alpelisib and fulvestrant was superior to 
placebo and fulvestrant, with greater benefit in second rather than first 
line therapy [64]. These findings emphasize the concept of the right 
patient at the right time with the right treatment. Other combinations 
including CDK 4/6 inhibitors (the third important target in ER-positive 
breast cancer) are being evaluated [65,66]. 

Investigations of metastases from a tumour that initially responded 
to BYL719 revealed loss of PTEN by two different genetic alterations 
[67]. Moreover, resistance developed in response to a first line therapy 
can generate resistance to secondary therapies simultaneously. For 
example, acquired PTEN loss mediates cross-resistance to CDK4/6 and 
PI3-Kα inhibitors [68]. One current hypothesis is that multiple agents 
given concomitantly to vertically inhibit the pathway will be more 
effective than sequential administration; however, toxicity is the major 
challenge [69]. The recently developed mutant specific inhibitors 
RLY-2608 [70], STX-478 [71] and LOXO-783 [72] show efficacy with 
less toxicity. 

AKT inhibitors are being investigated in clinical trials and are well 
tolerated. Encouraging levels of activity have been reported in patients 
with cancers harbouring AKTE17K mutations, which supports the use of 
biomarker-driven patient selection in the future clinical development of 
these products. In the FAKTION trial (capivasertib and fulvestrant), 
capivasertib predominantly benefited patients with tumours with al-
terations in the pathway compared to the non-altered subgroup [73,74]. 
These results with AKT inhibitors need to be verified in Phase 3 trials. 

In summary, PIK3CA mutations can be successfully targeted in adult 
tumours. Improving the therapeutic window is key to improving PI3-Kα 
anti-tumour activity [75] and the new mutation-specific inhibitors offer 
great potential. AKT inhibitors may have similar potential in 
AKT-altered tumours. The choice of concomitant combination therapy 
should be based on the molecular landscape and knowledge of the 
resistance mechanisms. These data are critical to understanding the 
appropriate development pathway in the paediatric population. 

6. Genomic landscape in children and potential genomic 
predictors for activity 

In adults, PIK3CA mutations occur in 11.6 % of all tumours and the 
most frequent of these are p.H1047 (34 %), p.E545 (27 %) and p.E542 
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(14 %) [76,77]. In contrast, in paediatric cancers, PIK3CA is mutated in 
only about 1–2 %, of tumours. The mutations are located within the 
same hotspots across adult and paediatric tumours [78,79]. Loss or 
mutation of PTEN occurs in 0.9 % of paediatric malignancies and other 
mutations of the PI3-K pathway are even less common (PIK3R1 [0.8 %], 
mTOR [0.7 %], TSC 1 [0.6 %], TSC 2 [0.6 %], AKT1 [0.5 %], AKT2 
[0.2 %] and AKT3 [0.6 %]) [78,79]. 

Data from St Jude Children’s Research Hospital PeCanPortal 
demonstrate a 1 % (61/5800) incidence of PIK3CA mutations in pae-
diatric malignancies [80]. High-grade gliomas have the highest inci-
dence of mutations and diffuse midline gliomas (DMG) have the highest 
proportion of PIK3CA mutations (17.5 % [10/57]), compared to 2.7 % 
(37/1378) of all CNS tumours and 6 % (4/67) of non-brain stem 
high-grade gliomas [80]. Approximately 5–6 % of DMG have a H1047R 
mutation [81] (5.7 % [8/140] Inform series personal communication D 
Jones). 

An arm of National Cancer Institute–Children’s Oncology Group 
(COG) Paediatric MATCH on the PI3-K pathway is investigating the use 
of samotolisib in patients with either TSC1, TSC2, mTOR, PIK3R1, 
PIK3CA mutations or PTEN mutation and loss [82]. Overall, the inci-
dence of these mutations was similar to those previously reported; 
notably 40 % of tumours also had a MAPK pathway mutation [82]. 

7. Development of mTOR inhibitors in children 

mTOR inhibitors were the first PI3-K-AKT-mTOR pathway inhibitors 
evaluated in children. The first generation of mTOR inhibitors included 
everolimus, temsirolimus, sirolimus (rapamycin), ridaforolimus, umir-
olimus, zotarolimus and the second generation were ATP-competitive 
mTOR kinase inhibitors including mTORC1/2 dual inhibitors (torin-1, 
torin-2, vistusertib) and mTOR/PI3-K dual inhibitors (paxalisib, samo-
tolisib, SF-1126). 

Everolimus was first approved in 2009 by the FDA and the EMA for 
renal cell carcinoma in adults. It was approved for SEGA in TSC in 
children and adults in 2010 in the US and in 2011 in Europe. The FDA 
has approved paediatric formulations for SEGA and TSC seizures. 

Based on a review of clinicaltrials.gov [83] and PubMed [84], since 
2000 there have been 59 trials with everolimus which allowed inclusion 
of paediatric patients (below 18 years of age), 34 (58 %) were for an 
oncological condition and 25 (44 %) for a non-oncological condition. 
Most of the trials for an oncological condition had an academic sponsor 
(31/34), with only three sponsored by industry. Moreover, most (30) 
were early phase/phase 2 trials. Four late phase trials have evaluated 
mTOR inhibitors: a Phase 3 COG ARST1431 evaluating temsirolimus in 
intermediate-risk rhabdomyosarcoma (academic) [4]; EXIST-1, evalu-
ating everolimus in SEGA in TSC (Novartis) [5], BIOMEDE evaluating 
everolimus and radiotherapy versus erlotinib and radiotherapy versus 
dasatinib and radiotherapy in biomarker selected patients with diffuse 
intrinsic pontine glioma (DIPG) (academic) [6] and BIOMEDE2 evalu-
ating everolimus and radiotherapy compared to ONC201 and radio-
therapy in DIPG (academic) [7]. The substantial imbalance of early to 
late phase trials indicates that most combinations or indications do not 
progress to front-line evaluation. Fourteen of the 34 oncological trials 
were single centre trials, with only two intercontinental. The first trial 
opened in 2004 with maximum number of trials opened in 2011 and 
2012 and some trials were still opening in 2022. 

The results of fifteen clinical trials of everolimus in paediatric cancer 
have been published: eight for CNS tumours [85–92] (SEGA in TSC [2] 
[91,92]), three for solid tumours [93–95], two for haematological ma-
lignancies [96,97] and two agnostic/mutation-driven [98,99]. With 
single agent therapy, the overall response rates for SEGA were 78 % 
(61/78), for low grade gliomas - objective response rate (ORR) 11 % 
(5/45), stable disease (SD) 49 % (22/45) and for solid tumours - ORR 
1.8 % (1/57), SD 28 % (16/570). In combination, the response rates 
were 22 % with vemurafenib in BRAF positive tumours [99], 33 % with 
vorinostat in Hodgkin’s lymphoma [97] and 86 % with chemotherapy in 

ALL [96], however there was no activity with ribociclib or bevacizumab 
[89,90,95,98]. 

There is a similar pattern with temsirolimus as with everolimus. 
From 2005 to 2016, there have been 32 trials for paediatric cancer with 
97 % (31) academic sponsored, 6 % (2) late-phase, 44 % (14) single 
centre and 91 % (29) combination trials. 

8. Products discussed at the Forum Paediatric Investigation 
Plans (PIPs) and details of completed paediatric trials 

Ten medicinal products – alpelisib, LOXO-783, copanlisib, inavoli-
sib, gedatolisib, paxalisib, capivasertib, miransertib, ipatasertib and 9- 
ING-41 were discussed (Table 1). 

As of April 2023, there are two published agreed PIPs for PI3-K and 
mTOR inhibitors in oncological indications: copanlisib (PI3-Kδ/α in-
hibitor) with an indication of relapsed or refractory neuroblastoma, 
Ewing sarcoma, osteosarcoma or rhabdomyosarcoma including in 
combination with chemotherapy; everolimus (mTOR inhibitor) for the 
treatment of patients with SEGA associated with TSC. As mentioned 
previously there is a PIP for alpelisib (PI3-Kα inhibitor) with an indi-
cation for treatment of PROS. There are no published agreed PIPs for 
AKT and GSK3β inhibitors (Table 2). 

Details of completed, discontinued and ongoing paediatric trials of 
PI3-K, mTOR, AKT and GSK3β inhibitors are shown in Table 3. In 
summary, there are 95 relevant paediatric trials, 18 with PI3-K in-
hibitors, 7 with AKT, 66 with mTOR, and 4 GSK3 inhibitors, involving 
21 products (12 PI3-K, 4 AKT, 3 mTOR, 2 GSK3 inhibitors). Most 56 % 
(53/95) are combination trials, particularly for mTOR inhibitors, 73 % 
(48/66). 

9. Combination strategies 

Sequencing cancer cell lines in the paediatric cancer dependency 
project highlighted important differences between paediatric and adult 
tumours with PI3-K pathway mutations. There was no enrichment of 
PI3-K pathway dependencies compared to adult tumours [100]. Thus, in 
paediatric cancer, distinct from PROS, there is a low a priori expectation 
of single agent activity, therefore it is crucial to consider how these in-
hibitors can be used as combination partners. 

To date, there have been no completed chemotherapy combination 
trials with PI3-K or AKT inhibitors, in contrast to many completed 
chemotherapy combination trials with mTOR inhibitors. 

There are two broad rationales for use of inhibitors as combination 
partners; a) synthetic lethality with novel agents - unfortunately there 

Table 1 
PI3-K, mTOR, AKT and GSK3β inhibitors discussed at the Forum.  

Product Target Paediatric 
clinical trials 
(recruiting) 

Paediatric 
Investigation 
Plan (PIP) 

Company 

Alpelisiba PI3-Kα 3(2)b + Novartis 
Copanlisib PI3-Kδ/α 1(1) + Bayer 
Inavolisib PI3-K 0  Genentech 
LOXO-783 PIK3CA ( 

H1047R) 
0  LOXO/Eli Lily 

Gedatolisib Dual PI3- 
K/mTOR 

0  Celcuity 

Paxalisib Dual PI3- 
K/mTOR 

1(1)  Kazia 
Therapeutics 

Capivasertib AKT 0  AstraZeneca 
Miransertib AKT 3(2c,d)  Merck 
Ipatasertib AKT 3(1)  Genetech 
9-ING-41 GSK3β 3 (1)  Actuate 

Therapeutics  

a Presented by an academic investigator; b PROS and megalencephaly- 
capillary malformation polymicrogyria syndrome; c Active, but not recruiting; 
recruiting trial for Proteus syndrome 
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are no known examples relevant to the PI3-K pathway; b) additivity/ 
synergy with combination partners. There are several examples of this:  

i. Enhancing chemosensitivity: a combination of irinotecan and 
temozolomide with temsirolimus with a 16 % response rate 
[101]. COG ARST0921 comparing bevacizumab versus temsir-
olimus with a vinorelbine and cyclophosphamide backbone 
demonstrated a superior event free survival (EFS) with temsir-
olimus, although there was no difference in response rate and 
overall survival [102]. Based on this, COG ARST1431 evaluated 
vincristine, dactinomycin and cyclophosphamide alternating 
with vincristine and irinotecan with or without temsirolimus in 
rhabdomyosarcoma [4]. COG ANBL1221 compared dinutuximab 
versus temsirolimus with an irinotecan and temozolomide back-
bone and dinutuximab was found to be superior [103]. This 
highlights that disease context matters. In ESMART, vistusertib 
(TORC1/2 inhibitor) was given as monotherapy in Arm E or in 
combination with topotecan and temozolomide in Arm F [104], 

but these arms were terminated prematurely. Similar to other 
combinations, the dose of the novel agent and the backbone 
chemotherapy had to be reduced because of toxicity and no 

responses were observed. In ALL, everolimus and a four-drug 
induction [96] and temsirolimus with cyclo-
phosphamide/etoposide have been evaluated and found to be 
safe. [105]. However, it is unknown if responses rates would have 
been the same without an mTOR inhibitor; this highlights the 
value of randomised trials. 

ii. Increased DNA damage: there are no published paediatric combi-
nations with DNA damage repair inhibitors nor with radio-
therapy, although one trial is ongoing [106].  

iii. Combinations with anti-angiogenic inhibitors: there is a completed, 
but not yet published paediatric trial of everolimus and lenvatinib 
in paediatric cancers [107]. A published trial of everolimus and 
sorafenib in adults with recurrent osteosarcoma reported a 
6-month PFS 45 % [108]. This compared favourably to 29 % with 
sorafenib monotherapy [109] and 12 % at 4-months in COG 
phase 2 pooled experience [110]. Several trials of sirolimus with 
metronomic chemotherapy demonstrated that the combination 
was tolerable [111,112], but with limited antitumor activity. 
Similar results were obtained with everolimus and bevacizumab 
[95].  

iv. Vertical inhibition: abrogating signalling at other nodes in axis: 
currently there is no clear evidence of a therapeutic benefit with 
vertical inhibition. The best example is a combination of IGF-1R 
inhibitors and temsirolimus. Two studies reported 12 % and 15 % 
response rates in Ewing sarcoma [113,114], which is similar to 
those seen with an IGF-1R inhibitor alone. In a study of the 
combination in all histologies, no responses were seen [115]. 
Combination therapy produced greater toxicity than expected 
with each single agent. A trial of the AKT inhibitor perifosine and 
temsirolimus had no responses [116]. 

v. Target signalling in two pathways: an adult trial combining tra-
metinib and temsirolimus was unable to identify a recommended 
phase two dose [117], however, there is an ongoing paediatric 
trial of the combination [118].  

vi. Dual inhibition of cell cycle: three trials of a mTOR and CDK4/6 
inhibitor [88,89] including a trial with molecular enrichment 
[98], again demonstrated that reduced doses were required when 
used in combination therapy. In addition, in two trials combining 
ribociclib and everolimus in recurrent CNS tumours. These data 
are critical to understanding the appropriate development 
pathway in the paediatric population including DIPG and high 
grade gliomas, there were no responses and a median of survival 
in DIPG was similar to registry data [88,89]. In a molecularly 
enriched population, when ribociclib was combined with top-
otecan and temozolomide there were no objective responses, but 
14.3 % of the patients had stable disease. When ribociclib was 
combined with everolimus again there were no objective re-
sponses but 41.2 % had stable disease, albeit a significant 
leukemic blast reduction was noted in a patient with T-ALL that 
exhibited genetic activation of both pathways [98]. 

There are several ongoing paediatric trials of combination products 
that target multiple pathways with one agent: samotolisib (dual PI3-K/ 
mTOR inhibitor) in Paediatric MATCH [82]; paxalisib (CNS penetrant 
dual PI3-K/mTOR inhibitor) for midline glioma [119]; two trials of 
fimepinostat (dual HDAC/PI3-K inhibitor) [120,121]. The trial of 
SF1126 (dual PI3-K/mTOR inhibitor) for neuroblastoma was terminated 
[122]. 

In summary, many trials are based on empiricism. Combination 
doses have been identified, but often at lower dose(s) than the single 
agent recommended dose due to toxicity. There are some signals of 
combination activity in ALL, osteosarcoma, and rhabdomyosarcoma. 
However, as there are very few randomised trials, the contribution of the 
mTOR inhibitor is difficult to ascertain and there are no predictive 
biomarkers to guide trial development. 

Table 2 
Published PIPs agreed for PI3-K, mTOR, AKT and GSK3β inhibitors, PIP for 
alpelisib (PI3-Kα inhibitor) with an indication for treatment of PROS.  

Product Copanlisib (Bayer) Everolimus (Novartis) 

PIP Modified PIP 2020 (EMEA- 
001757-PIP02-15-M02) 

Modified PIP 2014 for SEGA 
(EMEA-000019-PIP02-07- 
M05) 
Modified PIP for TSC (EMEA- 
000019-PIP08-12-M03) and 
for solid transplants (EMEA- 
000019-PIP06-09-M05) 
[Waivers for thoracic 
neuroendocrine tumor 2015, 
for carcinoid tumors 2008, for 
renal cell carcinoma and 
pancreatic NET 2007] 

MoA PI3-Kδ/α mTOR 
Condition Treatment of all conditions 

included in the category of 
malignant neoplasms (except 
haematopoietic and lymphoid 
tissue) 

Treatment of subependymal 
giant cell astrocytoma 

PIP 
Indication 

Treatment of children with a 
relapsed or refractory 
neuroblastoma, Ewing sarcoma, 
osteosarcoma or 
rhabdomyosarcoma including at 
first relapse, in combination with 
chemotherapy. 

Treatment of patients with 
subependymal giant cell 
astrocytomas (SEGA) 
associated with tuberous 
sclerosis complex (TSC) 

Waiver 0-6 months None 
Deferral By 2027 By 2015 
Formulation Powder for solution for infusion, 

intravenous use 
Tablet 
Dispersible tablet 

Clinical Open-label, non-controlled, dose 
escalating - PK, PD, safety and 
activity of copanlisib in relapsed/ 
refractory solid tumour or 
lymphoma (6mo-18y) 
Expansion phase in relapsed/ 
refractory neuroblastoma, 
osteosarcoma, 
rhabdomyosarcoma, Ewing 
(6mo-18y) 
Randomised, controlled – safety 
and efficacy of copanlisib 
+ anticancer therapy in relapsed/ 
refractory neuroblastoma, 
osteosarcoma, 
rhabdomyosarcoma, Ewing 6mo- 
18y) 

Relative bioavailability study 
between intact 1 mg tablet 
and 1 mg tablet dispersed in 
water in adults 
Bioequivalence study 
between intact 1 mg tablet 
and 5 mg dispersible tablet in 
adults. 
Randomised, double-blind, 
placebo-controlled, parallel- 
group, dose-titration, 
comparative, multi-centre 
study → PK, safety, 
tolerability and activity of 
everolimus in children (0- 
18y). 

PK - pharmacokinetic, PD, - pharmacodynamic 
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10. Discussion 

10.1. Patient advocates’ perspective 

Patient advocates noted that the development of alpelisib for PROS 
reinforced lessons on how each research participant’s data can add value 
to understanding the biology and treatment of paediatric cancers. 
Further, this example leads advocates to urge tighter collaborations 
among academic researchers and provides a model to address the needs 
of patients with rare paediatric cancers. It also demonstrated once again 
how advocates’ early engagement in companies’ planning can be 
beneficial to ensure that trial design meets the unmet needs of patients. 

Advocates appreciated that while current technologies are critical to 
molecularly identify patients who might benefit from novel agents, they 
urged the use of new techniques for selecting patients for trials beyond 

molecular pathways. They encouraged greater consideration of the 
unique features of paediatric cancers (e.g. tumour microenvironment 
and cells’ tendency to differentiate) to increase the validity of nonclin-
ical research necessary for evaluating new paediatric indications. 

While advocates supported some low-risk strategies, such as dietary 
interventions, to inhibit certain pathways critical for tumour growth, 
they strongly agreed that combining novel/novel or novel/standard 
agent are required to achieve the greatest therapeutic impact. Novel 
agents are expected to be more promising, but drugs repurposed based 
on adult clinical and preclinical data should be considered only with 
strong rationale. Finally, advocates noted that when investigators 
consider a drug for paediatric cancer evaluation, its expected lifespan in 
a company needs to be deeply understood so that trials are completed 
and that the research participation of each child with cancer is valued. 

Table 3 
Summary of completed and ongoing paediatric trials of PI3K, AKT and GSK3β inhibitors.  

Product (Company) Target Paediatric Trials 

Name - NCT Phase Treatment Indication Status (Study Start) 

Paxalisib (Kazia) 
[106] 

Dual PI3-K/ 
mTOR 

NCT05009992 2 Paxalisib 
+ ONC201 + RT 

DIPG  Recruiting (2021) 

Samotolisib (Eli 
Lilly)[82] 

Dual PI3-K/ 
mTOR 

NCT03213678 2 Monotherapy Relapsed/refractory solid tumors, NHL, 
HCL with TSC or PI3K/mTOR mutations  

Active, not recruiting (2017) 

SF-1126 (SignalRX) 
[122] 

Dual PI3-K/ 
mTOR 

NCT02337309 1 Monotherapy Relapsed/refractory neuroblastoma  Terminated (2015) 

Copanlisib (Bayer) 
[138] 

PI3-K δ/α NCT03458728 1/2 Monotherapy Relapsed/refractory solid tumors or 
lymphoma  

Recruiting (2018) 

Duvelisib (Secura 
Bio)[139] 

PI3-Kδ/γ NCT02028039 2 Monotherapy Relapsed/refractory ALL  Withdrawn (2013) 

Alpelisib (Novartis) 
[45,140,141] 

PI3-K α NCT05577754 2 Monotherapy Megalencephaly-capillary Malformation 
Polymicrogyria Syndrome (MCAP)  

Not yet recruiting (2022) 

NCT04980833 2 Monotherapy PIK3CA-related overgrowth spectrum 
(PROS)  

Recruiting (2022) 

NCT04589650 2 Monotherapy PIK3CA-related overgrowth spectrum 
(PROS)  

Recruiting (2021) 

Idelalisib (Gilead) 
[142,143] 

PI3-K δ NCT03349346 1 Idelalisib + CT (RICE) B-cell lymphoma  Withdrawn (2019) 
NCT01393106 2 Monotherapy R/R Hodgkin lymphoma  Completed (2011) 

Leniolisib 
(Pharming) 
[144–147] 

PI3-K δ NCT05693129 3 Monotherapy Activated PI3Kdelta Syndrome (APDS)  Recruiting (2023) 
NCT05438407 3 Monotherapy Activated PI3Kdelta Syndrome (APDS)  Not yet recruiting (2022) 
NCT02435173 2/3 Monotherapy APDS or Common Variable 

Immunodeficiency  
Completed (2015) 

NCT02859727 2/3 Monotherapy Activated PI3Kdelta Syndrome (APDS)  Active, not recruiting (2016) 
Umbralisib (Rhizen) 

[148,149] 
Dual PI3-Kδ 
/CK1ε 

NCT03364231 2 Monotherapy NHL (Waldenstrom Macroglobulinemia)  Completed (2017) 
NCT03207256 2 Umbralisib 

+ Ublituximab 
CLL or NHL  Terminated (2017) 

Fimepinostat (Curis) 
[120,121] 

PI3-K 
α/β/δ 
&HDAC 
1/2/3/10 

NCT03893487 1 Fimepinostat + surgery DIPG or HGG  Active, not recruiting (2019) 
NCT02909777 1 Fimepinosta Solid tumors (including neuroblastoma), 

lymphoma, or brain tumors.  
Active, not recruiting (2016) 

Ceralasertib (AZ) 
[150] 

Dual ATR/PI3- 
K-related kinase 

NCT04417062 2 Monotherapy R/R osteosarcoma  Recruiting (2020) 

Mirasentib (Merck) 
[53,151,152] 

AKT NCT03094832  Monotherapy PIK3CA-related overgrowth spectrum 
(PROS)  

Terminated (2017) 

NCT04980872 2 Monotherapy   Active, not recruiting (2021) 
NCT04316546 2 Monotherapy Proteus syndrome  Recruiting (2022) 

MK-2206 (Merck) 
[153] 

AKT NCT01231919 1 Monotherapy R/R solid tumors or leukemia  Completed (2011) 

TAS-117 (Taiho) 
[154] 

AKT NCT04770246 2 Monotherapy Advanced/MTX solid tumors + /- germline 
PTEN inactivating mutations  

Recruiting (2021) 

Ipatasertib (Roche) 
[155] 

AKT TAPISTRY 
NCT04589845 

2 Monotherapy Advanced/MTX solid tumors  Recruiting (2021) 

9-ING-41 (Actuate) 
[156–158] 

GSK3β NCT04239092 1 Monotherapy R/R malignancies  Recruiting (2020) 
NCT05116800 2 9-ING-41 + CT 

(gemcitabine/docetaxel) 
Advanced/MTX sarcoma  Withdrawn (2022) 

NCT04906876 2 9-ING-41 + CT 
(gemcitabine/docetaxel) 

Advanced/MTX sarcoma in adolescents/ 
adults  

Withdrawn (2021) 

Tideglusib (AMO) 
[159] 

GSK3β NCT03692312 2/3 Monotherapy Congenital myotonic dystrophy  Recruiting (2021) 

CNS – central nervous system; DIPG – diffuse intrinsic pontine glioma; HRR - homologous recombination repair, NHL – non Hodgkin’s lymphoma, HCL - Hodgkin’s 
lymphoma, DDR - DNA Damage Response, HR - homologous recombination, RMS – rhabdomyosarcoma, RP2D – recommended phase 2 dose, SRCT – small round cell 
tumour 
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10.2. Specific themes 

10.2.1. Role of the PI3-K pathway in paediatric cancer 
PI3-K is associated with many genes that drive tumour formation. 

Mutations in PIK3CA predict response to PI3-K inhibitors in adult can-
cers [3], indicating that targeting of PIK3CA mutation is crucial. How-
ever, mutations of the pathway are rare (1.9 %) in paediatrics, with 
DMG having the highest frequency of PI3KCA mutations (16–20 %). 

10.2.2. Lessons learnt from the clinical evaluation of mTOR inhibitors 
mTOR inhibitors are effective, and everolimus, has been approved 

for the treatment of SEGA. Everolimus and temsirolimus have been 
predominantly evaluated in paediatric cancer by academia, generally in 
empiric, mutation-agnostic, uncoordinated clinical trials many without 
a clear biological rationale. Moreover, most trials did not enrich for a 
PI3K pathway activated study population. Response rates to mono-
therapy and combinations have been generally very low in children with 
relapsed cancers, with the exception of those with low grade gliomas. 
Moreover, due to lack of randomisation, it is uncertain how much of any 
observed activity in combination trials is due to mTOR inhibition. Lack 
of evidence of single-agent activity does not justify opening of combi-
nation trials as, generally, it is uncommon for additional meaningful 
clinical benefit to be observed for combinations in which an agent 
lacking evidence of single agent activity is evaluated [123–125]. 
Therefore, future trials of mTOR inhibitors in childhood cancer should 
be appropriately powered and not conducted unless there is a strong 
biological rationale and supportive preclinical data that demonstrate the 
potential for clinically meaningful benefit (e.g. regression of established 
tumours in preclinical in vivo models). To date, dual mTORC1/2 in-
hibitors have not been evaluated in detail in paediatrics. For example, 
the development of the TORC1/2 vistusertib was halted early due to a 
drug-intrinsic failure to engage the target, but not necessarily due to a 
lack of effect of dual TORC inhibition. Evaluation of novel anticancer 
therapies and combinations should be developed based on mechanism of 
action and robust preclinical evaluation and may include data from 
adult clinical trials. 

10.2.3. Challenges of PI3-K inhibitors 
To date the major barriers to the clinical translation of these in-

hibitors in both adults and children have been: i) limited single-agent 
activity as the pan PI3-K inhibitors target both wild-type and mutant 
PI3-K; ii) limiting toxicities including high blood glucose; iii) the effects 
being negated by high insulin levels and iv) lack of CNS penetration. 
Overall, this has resulted in very few completed studies in paediatrics 
and none in combination with other drugs. 

With non-mutation specific inhibitors, a ketogenic diet, metformin, 
or SGLT2 inhibitors could be employed to overcome or prevent high 
insulin levels. Additionally, these challenges may be reduced with new 
mutation-specific PI3-K inhibitors with reduced toxicity from off-target 
PI3-Kα wild-type activity. Paediatric studies should be undertaken with 
mutation-specific inhibitors in tumours with the relevant mutations, 
acknowledging the rarity of such tumours. 

10.2.4. How can PI3-K, mTOR, AKT and GSK3β inhibitors fulfil unmet 
needs in childhood cancer and which inhibitors are of the highest value for 
children? 

The greatest potential role for PI3-K inhibition in childhood cancer is 
probably in DMG, where there is the highest frequency of PIK3CA mu-
tations and a very substantial unmet clinical need. In view of the his-
torical difficulties assessing these inhibitors, investigations should focus 
on DMG as proof of concept with mutation-specific CNS-penetrant in-
hibitors. However, the major challenge is the low frequency of the 
mutations (5–6 % of DMG have a H1047R mutation) and therefore there 
must be patient selection. 

In addition, DMGs harbouring PIK3CA mutations showed increased 
sensitivity to the DRD2 antagonist and ClpP agonist ONC201, suggesting 

that PI3-K/Akt signalling promotes metabolic adaptation to ONC201- 
mediated disruption of mitochondrial energy homeostasis in DMGs 
[126]. However, there are emerging data that PI3-K may be a general 
dependency in DMG irrespective of PIK3CA status. Using a cancer cell 
line atlas and multiomics analyses, a substantial difference in PIK3CA 
gene dependency has been reported in paediatric compared to adult 
high grade gliomas [127]. Most paediatric high-grade gliomas 
(including DMGs) are highly sensitive to PI3-K inhibition compared with 
adult lines. However, unlike adult cancers (for example breast cancer) 
where PIK3CA mutations predict PIK3CA dependence, PIK3CA mutation 
did not predict response to PI3-K inhibition in paediatric high grade 
glioma cell lines [127]. In addition, in patient tumours there is a relative 
high frequency of alterations in AKT and PTEN. Therefore, an alterna-
tive approach to evaluate PI3-K inhibitors in DMG would be a less 
focused, not mutation specific, strategy, though this may be of limited 
utility for mutation-specific compounds with little off-target activity. 
The results of Combination Therapy for the Treatment of Diffuse Midline 
Gliomas (NCT05009992) evaluating paxalisib, ONC201 and radio-
therapy in diffuse intrinsic pontine glioma are awaited. 

Outside the very rare occasion where there is a mutation (~0.1 %), 
the role of AKT in paediatric cancers remains unclear. Robust pre- 
clinical anti-tumour activity for GSK3β inhibitors have been reported 
in paediatric tumours. As these drugs have, in addition to effect on the 
PI3-K pathway, multiple effects, including immune modulation (in-
creases NK cell activity, regulates expression of immune checkpoints in 
tumours (PD-1, LAG-3, TIGIT), up-regulates MHC in MHC null or low 
tumour cell lines and decreases TCR clonality and increases specific T 
cell clonotypes), further preclinical evaluation is required to understand 
which patients are most likely to benefit. However, currently there is a 
lack of models for evaluation of drugs such as 9-ING41 that have 
immunomodulatory activity, and this presents a challenge to providing 
the pre-clinical rationale that is required to support the development of 
these immunomodulatory agents. The results of the ongoing clinical trial 
(NCT04239092) will demonstrate the toxicity profile and initial activity, 
but trials of biological rational combinations are required. TORC1/2 
inhibitors have been studied in a few paediatric trials, however their 
results to date in children and adults do not prioritise their further 
evaluation, although there is pre-clinical activity in neuroblastoma 
[128]. 

A further potential role of inhibitors of the pathway relates to tar-
geting MYCN protein. GSK3β regulates the phosphorylation status of 
T58, which is critical to the oncogenic activity of MYC proteins [129]. 
Degradation of MYCN is required for terminal differentiation of 
neuronal precursors [130]. Aberrant PI3-K/mTOR activity in neuro-
blastoma correlates with poor outcome [131], drives oncogenic stabi-
lization of MYCN [132] and could be targeted by clinical PI3-K pathway 
inhibitors. However, destabilising of MYCN protein as an approach to 
target MYCN has not been evaluated in the clinic. 

10.2.5. Optimal combinations 
To date, paediatric combination trials with PI3-K inhibitors have 

generally been empiric and not based on tumour biology, in contrast to 
studies in advanced breast cancer. An appropriate combination, 
including with immunotherapy, must be based on disease biology, 
preclinical data, and resistance mechanisms. The choice of combination 
therapy should be based on the molecular landscape and knowledge of 
concomitant mutations in other genes, therefore molecular profiling of 
DMGs with H1047R mutations is high priority. The optimal combination 
in DMG will be discussed at the thirteenth Paediatric Strategy Forum on 
DMG in May 2023. The combinations assessed to date have demon-
strated unique and increased toxicities, necessitating lower doses than 
used in monotherapy. An industry-supported, academic-sponsored 
platform trial with compounds from different pharmaceutical com-
panies may be an approach. With very few randomised trials the 
contribution of, for example, mTOR inhibitors, is difficult to ascertain. 
To isolate the efficacy and toxicity contributed by a PI3-K pathway 
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inhibitor, a randomised trial is needed comparing the partner with and 
without the PI3-K inhibitor. 

10.2.6. Strategy for evaluating these inhibitors in a very rare population 
The scenario with the greatest probability of success is an evaluation 

of a mutation-specific, CNS-penetrant PI3-K inhibitors in children with 
DMG. In view of past difficulties, investigations should focus on DMG as 
proof of concept. There are substantial challenges in such a rare popu-
lation with many competing trials. The aim should be on hypothesis- 
driven evidence generation focusing on the most suitable product. 
Innovative regulatory approaches such as the currently piloted “step-
wise“ PIP supporting data generation should be considered [133]. 
Meaningful data generation in clinical trials, and use of real-world data 
could support innovative regulatory approaches to obtain an indication. 
Furthermore, in view of global development, there should be simulta-
neous regulatory submissions of PIPs and initial Paediatric Study Plans 
to the EMA and the FDA, respectively, to facilitate early regulatory in-
teractions and discussions among regulatory agencies e.g. at the Pae-
diatric Cluster [134–137]. 

11. Conclusion 

PIK3CA mutations should be targeted, but improving the therapeutic 
window of PI3-Kα inhibition is key to increasing anti-tumour activity 
and the new mutation specific inhibitors are expected to offer greater 
potential. 

There is a low a priori expectation of single agent activity, therefore 
it is crucial to consider how these inhibitors can be used as combination 

partners. The choice of concomitant combination therapy should be 
based on the molecular tumour/disease landscape, concomitant muta-
tions in other genes and knowledge of the resistance mechanisms. 
Evaluation of mutation-specific, CNS-penetrant PI3-K inhibitors in 
children with DMG should be prioritised and innovative regulatory ap-
proaches are needed in view of the rarity of the population. 

CRediT authorship contribution statement 

Amy Rosenfeld: Writing – review & editing, Validation, Method-
ology, Investigation, Formal analysis, Data curation. John Friend: 
Writing – review & editing, Validation, Methodology, Investigation, 
Formal analysis, Data curation. Nicole Scobie: Writing – review & 
editing, Validation, Methodology, Investigation, Formal analysis, Data 
curation. Julia Glade Bender: Writing – review & editing, Validation, 
Methodology, Investigation, Formal analysis, Data curation. Alberto 
Pappo: Writing – review & editing, Validation, Methodology, Investi-
gation, Formal analysis, Data curation. John Chung: Writing – review & 
editing, Methodology, Investigation, Formal analysis, Data curation. D 
Williams Parsons: Writing – review & editing, Validation, Methodol-
ogy, Investigation, Formal analysis, Data curation. Elizabeth Fox: 
Writing – review & editing, Validation, Methodology, Investigation, 
Formal analysis, Data curation. Karsten Nysom: Writing – review & 
editing, Validation, Methodology, Investigation, Formal analysis, Data 
curation. Guillaume Canaud: Writing – review & editing, Validation, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu-
alization. Christopher Ours: Writing – review & editing, Validation, 
Methodology, Investigation, Formal analysis, Data curation, 

Box 1 
Text box of key conclusions of the Paediatric Strategy Forum.   

• Mutations in PIK3CA encoding PI3-K are the most common actionable alterations in all cancers  
• PI3-K is a potentially important target for the development of new paediatric anti-cancer drugs   

• Major barriers to clinical translation are:  
■ Unique clinical toxicities – hyperglycaemia  
■ Difficulties combining with chemotherapy  
■ Rarity of mutations (1% of paediatric malignancies have a PIK3CA mutation, DMGs have the highest proportion 17.5% and 

approximately 5-6% of DMG have a H1047R mutation  
■ Concomitant mutations   

• As a result of these barriers PI3-K inhibitors have not had yet a major impact in paediatric cancer  
• Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers   

• Alpelisib, a PI3-Kα inhibitor, has activity in PIK3CA-related overgrowth syndrome therapy  
• New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity  
• Understanding the genomic landscape of the tumours and resistance mechanisms is key for rational combinations  
• Evaluation of mutation-specific, CNS-penetrant PI3-K inhibitors in children with DMG and should be prioritised  
• Innovative regulatory approaches are needed to support data generation for mutation-specific, CNS-penetrant PI3-K inhibitors in DMG, 

such as the currently piloted ‘stepwise’ PIP  
• Combination therapy should be based on the molecular landscape and knowledge of concomitant mutations in other genes - molecular 

profiling of DMGs with H1047R mutations is high priority  
• Emerging data suggest that PI3-K may be a general dependency in DMG irrespective of PIK3CA status  
• mTOR inhibitor everolimus has been approved for subependymal giant cell astrocytomas  
• mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, with very low response rates to 

monotherapy  
• Future trials of mTOR inhibitors in childhood cancer should not be conducted without very strong biological rationale and supportive 

preclinical data.  
• Further preclinical evaluation is required for GSK3β inhibitors to explore their immunomodulatory effect and role in modulating MYCN 

protein  
• Even where there is an AKT mutation (~0.1%), the role of AKT inhibitors in paediatric cancers remains unclear    
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Nadège CorradiniIHOPe- CLB. 
Dean CroweRally Foundation for Childhood Cancer Research. 
Federica D’antonioSapienza University. 
Teresa de RojasACCELERATE. 
Bruna DekicBfarm. 
Andrea DemadonnaACCELERATE. 
Atacan DemiralpOne For All. 
Daniela Di CarloUniversità degli Studi di Padova. 
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Trial. J Clin Oncol 2021;39:3546–60. 

[99] Subbiah V, Sen S, Hess KR, Janku F, Hong DS, Khatua S, et al. Phase I Study of the 
BRAF Inhibitor Vemurafenib in Combination With the Mammalian Target of 
Rapamycin Inhibitor Everolimus in Patients With BRAF-Mutated Malignancies. 
JCO Precis Oncol 2018;(2):PO.18.00189. https://doi.org/10.1200/PO.18.00189. 

[100] Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, Hong AL, et al. 
A first-generation pediatric cancer dependency map. Nat Genet 2021;53:529–38. 

[101] Bagatell R, Norris R, Ingle AM, Ahern C, Voss S, Fox E, et al. Phase 1 trial of 
temsirolimus in combination with irinotecan and temozolomide in children, 
adolescents and young adults with relapsed or refractory solid tumors: a 
Children’s Oncology Group Study. Pedia Blood Cancer 2014;61:833–9. 

[102] Mascarenhas L, Chi YY, Hingorani P, Anderson JR, Lyden ER, Rodeberg DA, et al. 
Randomized Phase II Trial of Bevacizumab or Temsirolimus in Combination With 
Chemotherapy for First Relapse Rhabdomyosarcoma: a report from the children’s 
oncology group. J Clin Oncol 2019;37:2866–74. 

[103] Mody R, Naranjo A, Van Ryn C, Yu AL, London WB, Shulkin BL, et al. Irinotecan- 
temozolomide with temsirolimus or dinutuximab in children with refractory or 
relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 
trial. Lancet Oncol 2017;18:946–57. 

[104] Morscher RJ, Brard C, Berlanga P, Marshall LV, André N, Rubino J, et al. First-in- 
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